
A1: Introduction to Node.js 1

COM644 Full-Stack Web and App Development

Practical A1: Introducing Node.js

Aims
• To introduce Node.js and the Node Package Manager npm
• To check the Node and npm installation
• To demonstrate the Node console
• To introduce Node source files
• To demonstrate splitting code across separate source files
• To introduce the concept of blocking code
• To demonstrate the use of anonymous and named callback functions
• To illustrate the problem of computational blocking

Contents
A1.1 INSTALLING AND RUNNING NODE.JS .. 2

A1.1.1 CHECKING YOUR INSTALLATION .. 2
A1.1.2 RUNNING NODE.JS FROM THE COMMAND LINE .. 3
A1.1.3 CREATING AND RUNNING NODE.JS SOURCE FILES.. 4

A1.2 SPLITTING NODE APPLICATIONS INTO MULTIPLE FILES ... 5
A1.2.1 IMPORTING CODE TO RUN IMMEDIATELY .. 5
A1.2.2 IMPORTING FUNCTIONS .. 5
A1.2.3 IMPORTING FUNCTIONS THAT RETURN VALUES ... 8

A1.3 NON-BLOCKING CODE ... 10
A1.3.1 SYNCHRONOUS I/O OPERATIONS AND BLOCKING.. 11
A1.3.2 ASYNCHRONOUS I/O – NON-BLOCKING CODE AND CALLBACK FUNCTIONS .. 12
A1.3.2 COMPUTATIONAL BLOCKING .. 14

A1: Introduction to Node.js 2

A1.1 Installing and Running Node.js

Node.js (often called simply “Node”) is a development platform built on top of Google’s V8
Javascript engine. Node uses an event-driven, non-blocking input/output model that runs
as a single process, resulting in a very lightweight and efficient platform that is well-suited
to the implementation of web server applications. Node is increasing rapidly in popularity
with large-scale online organisations – including Netflix, PayPal, GoDaddy, LinkedIn and
many others.

Node comes bundled with a package manager called npm (Node Package Manager). This
makes it easier for developers to publish and share useful libraries.

Node and npm are installed for you on the lab systems, but they can be downloaded free
from https://nodejs.org.

A1.1.1 Checking your installation

We can check for the availability of Node and npm by requesting the version number of the
installation on our machine. Open a Command window on your PC and issue the following
commands

U:\> node --version

U:\> npm --version

If both Node and npm are installed properly, you should see a result similar to that
illustrated in Figure A1.1 below.

Figure A1.1 Checking the Node.js and npm installation

A1: Introduction to Node.js 3

A1.1.2 Running Node.js from the command line

Now that we are satisfied that Node and npm are available on the PC, we can issue our first
Node commands by entering the Node console with the command

U:\> node

You should find a command line interface with the Node console prompt >, at which we can
enter Javascript commands.

As a first example, we will use the Javascript console.log() command that allows us to
output information to the console. Enter the commands below to print out a simple “Hello
World” message, then another version that uses a Javascript variable

> console.log(“Hello world!”)

> var name = ”Adrian”

> console.log(“Hello “ + name)

Verify that you receive output such as that shown in Figure A1.2 below.

Figure A1.2 The Node command prompt

A1: Introduction to Node.js 4

A1.1.3 Creating and running Node.js source files

Using the Node console allows us to quickly verify that the platform is installed and working,
but in order to do any serious development, we need to be able to organise our code into
source files. Indeed, the way in which Node manages collections of files is one of its main
strengths as a platform for rapid development of serious applications.

Exit the Node console by entering CTRL-C twice and create a folder called A1 in which we
will arrange our files in this practical. Now, navigate into the A1 folder and create a new file
called app.js containing the following code.

File: A1/app.js

var name="Adrian";
console.log("Hello " + name);

Now, navigate into the A1 folder in the Command window and run the new file by the
command

U:\A1> node app.js

If everything is in place, you should see output such as that illustrated in Figure A1.3 below.

Figure A1.3 Running a Node file from the command line

A1: Introduction to Node.js 5

A1.2 Splitting Node applications into multiple files

One of the main principles in Node development is that we want our code to be modular –
where no single file should contain a large volume of code. With this in mind, we will now
examine three ways in which we can move code into external files and call it from
elsewhere in the application.

A1.2.1 Importing code to run immediately

First, we will examine the simplest case, where we want to call code from an external file to
be run immediately.

Copy the hello world code from app.js into a new file called instantHello.js and replace the
app.js code with the require() statement below so that you have the following code
structure.

File: A1/app.js

require(‘./instantHello’)

File: A1/instantHello.js

var name="Adrian";
console.log("Hello " + name);

In the require() statement, note the./ path to the external file. This is required to tell
Node that the file we want to use is located in the current folder. If we do not provide a
path, Node will assume that we are trying to import one of the standard Node libraries that
is managed by npm (see Practical A2 for more information). Also, note the lack of a .js file
extension – actually we could include this is we wanted, but the convention is to leave it off,
so that Node will look BOTH for a file called instantHello.js and for a folder called
instantHello.

We can now run app.js and verify how the application still works exactly as before.

A1.2.2 Importing functions

We do not always want to include code that is to be run straight away. It is much more
common that we might define a function that will be called in response to some event. To

A1: Introduction to Node.js 6

achieve this, we need to use the Node module.exports() method to expose the function
that we want to make available.

Create a new sub-folder within A1 called talk. Inside the new folder, create a file
goodbye.js with the following code

File: A1/talk/goodbye.js

module.exports = function() {
 console.log("Goodbye!");

};

This code creates an anonymous function (i.e. one with no name) which uses
console.log() to output a message and makes the function available to other code files
by assigning it to module.exports(). Now we need to require the goodbye file within
app.js and call it as a regular function as follows.

File: A1/app.js

require(‘./instantHello’);
var goodbye = require(‘./talk/goodbye’);

goodbye();

Note how the function acquires its name by the variable to which we assign the exposed
function. This is an example of Javascript functions as first order objects (i.e. functions can
be used just as primitive data types and can be used in assignments, stored in arrays and
passed as parameters just like objects of any other type). This is a very important concept in
Node and one to which we will frequently return.

You can now verify the operation of this code by running app.js in the Command window
and verifying that you receive output as illustrated in Figure A1.4 below.

A1: Introduction to Node.js 7

Figure A1.4 Exposing functions from an external file

Sometimes we want to expose multiple functions from a single file. We will demonstrate
this by re-factoring the previous example to replace the “Hello world” message by a second
function that will be also exported from the code file. Create a new file inside the talk folder
called index.js as follows

File: A1/talk/index.js

var filename = "index.js";

var hello = function(name) {
 console.log("Hello " + name);

};

var goodbye = function() {
 console.log("Goodbye from " + filename);

};

module.exports = {
 hello : hello,
 goodbye : goodbye

};

Here, the functions are exposed by defining them as a Javascript object of key/value pairs,
where the key is name of the function to be exposed and the value is the name by which it
will be known in code where it is required. Note that all that is exposed are the two

A1: Introduction to Node.js 8

functions – the variable filename is private to this file and can be used by any of the
functions, but is not exposed to the wider application. We might equally have implemented
private functions that are used by those to be exposed, but are not themselves exposed.

Now we require the new functions within app.js and use them. Note that the index.js
filename does not need to be specified, it will be assumed as long as we provide the path.

File: A1/app.js

var talk = require('./talk');

talk.hello("Adrian");
talk.goodbye();

Run app.js from the Command prompt and verify that you receive the output as illustrated
in Fig A1.5

Figure A1.5 Exposing multiple functions

A1.2.3 Importing functions that return values

Sometimes, our functions that are exposed through module.exports() will return values
that we want to use within the main (calling) part of the code.

A1: Introduction to Node.js 9

We will demonstrate this by creating a new file within the talk folder called question.js with
the following code.

File: A1/talk/question.js

var answer = "Now that's a good question!";

module.exports.ask = function(question) {
 console.log(question);
 return answer;

};

Here, we define a function called ask() which will be exposed to the main application by
chaining it to the module.exports method . The function will accept a parameter called
question, which it outputs using console.log() and then returns an answer, defined
here as a private string.

Now, we go back to app.js and require the new function. Then, we can create a new
variable answer to hold the value returned from the exposed function and use
console.log() to display it.

File: A1/app.js

var question = require(‘./talk/question’);

 var answer = question.ask(“What is the meaning of
 life?”);

console.log(answer);

You can now run app.js in the Command window and verify that you receive output such as
that shown in Figure A1.6 below.

A1: Introduction to Node.js 10

Figure A1.6 Accepting a return value from an exposed function

A1.3 Non-blocking code

Node.js is designed to provide I/O scalability. As Node is single threaded, it is very
important that one user’s (e.g.) database access does not slow down the server for other
users, hence input/output operations in Node are asynchronous and non-blocking. The
consequence of this is that later operations in the code sequence should not be forced to
wait for earlier functions to complete.

As an example of how we can specify operations to run ‘out of order’, create a new file
within your A1 folder called setTimeout.js, with code as follows

File: A1/setTimeout.js

console.log("1. Start app");

var holdOn = setTimeout(function() {
 console.log("2. In the setTimeout");

}, 1000);

console.log("3. End app");

Here, we have 3 calls to console.log(), one at the beginning of the code, one at the end,
and one within a function that is a parameter to a Javascript setTimeout() function. The
purpose of setTimeout() is to introduce a delay before a specified action is executed,

A1: Introduction to Node.js 11

with the delay expressed in milliseconds, hence we should have a delay of 1 second before
the second console.log() is executed.

Run the file setTimeout.js in the Command window and observe how the first and third
messages appear instantly, while the second does not appear until after the one second
delay has elapsed. Also, consider how the delay in the second message has not prevented
the third from being displayed – i.e. the setTimeout() function has been implemented as
a non-blocking operation.

Figure A1.7 Simulating a non-blocking operation

A1.3.1 Synchronous I/O operations and blocking

Now create a file called readFileSync.js which uses the native Node module fs that allows us
to read files from the local file system

File: A1/readFileSync.js

var fs = require('fs');

console.log("Going to get a file");
var file = fs.readFileSync('readFileSync.js');
console.log("Got the file");

console.log("App continues...");

A1: Introduction to Node.js 12

The readFileSync() method reads a file in a synchronous (i.e. blocking) manner,
requiring that subsequent operations cannot be executed until the file read is complete.
Run readFileSync.js in the Command window and verify that the console.log()
messages are generated in the same order as they appear in the code.

Figure A1.8 Synchronous operation

Although this file input operation is a trivial one, we can prove its blocking nature by re-
factoring the code to use an asynchronous (i.e. non-blocking) file read instead and
comparing the output.

A1.3.2 Asynchronous I/O – non-blocking code and callback functions

Create the new file readFileAsync.js in the A1 folder, with code as shown below.

File: A1/readFileAsync.js

var fs = require('fs');

console.log("Going to get a file");
fs.readFile('readFileSync.js', function(err, file) {

 console.log("Got the file");
});

console.log("App continues...");

A1: Introduction to Node.js 13

Here, we use the asynchronous method readFile(), which accepts as a second parameter
an anonymous callback function that is executed when the read operation is complete. The
callback function takes 2 parameters, an object which is populated when a read error
occurs, and an object that will contain the contents of the file that has been read. We will
see later (Practical A3) how these parameters can be used, but for now we want to verify
that the time taken by the read operation is sufficient for the third console.log()
message to be displayed before the file read is complete.

Run readFileAsync.js in the Command window and verify that the console.log()
messages appear in the order shown in Figure A1.9 – i.e. the file read operation is proven as
non-blocking.

Figure A1.9 Asynchronous operation

Anonymous callback functions are a powerful and widely used element of Node.js, but to
improve code readability we could just as easily re-write the callback as a named function as
shown below.

A1: Introduction to Node.js 14

File: A1/readFileAsync.js

var fs = require('fs');

var onFileLoad = function(err, file) {
 console.log("Got the file");
}

console.log("Going to get a file");
fs.readFile('readFileSync.js', onFileLoad);

console.log("App continues...");

Here, we define a function assigned to the variable onFileLoad, which is then specified as
the callback from the readFile() method.

Make these changes to readFileAsync.js and verify that the operation is identical to the
previous version with the anonymous callback.

A1.3.2 Computational blocking

Not all delays in code execution are caused by I/O operations, and although Node is not
designed for computational scalability, there is a means by which we can implement non-
blocking execution for computationally-intensive operations.

The generation of the Fibonacci sequence is a classic example of an algorithm that is
computationally intensive for high values. Create the file fibonacci.js that calculates and
displays the 42nd value in the Fibonacci sequence and the file computationalBlocking.js that
requires the Fibonacci code and sandwiches it between a pair of console.log()
statements.

Note: There is nothing special about the selection of the 42nd value in the Fibonacci
sequence. It is simply one that generates a decent delay in execution to illustrate the point
in this example. Try changing the value to see the effect of the delay time.

A1: Introduction to Node.js 15

File: A1/fibonacci.js

var fibonacci = function(n) {
 if (n <= 2) {
 return 1;
 } else {
 return fibonacci(n-1) + fibonacci(n-2);
 }

};

console.log(fibonacci(42));

File: A1/computationalBlocking.js

console.log(1)
require('./fibonacci');
console.log(2);

Run the file computationalBlocking.js in the Command window and observe the delay while
the Fibonacci value is calculated.

Figure A1.10 Computational blocking

To preserve the non-blocking nature of Node, we need to find a way to allow execution to
continue while the Fibonacci value is calculated. Create a new file
computationalNonBlocking.js with code as shown below.

A1: Introduction to Node.js 16

File: A1/computationalNonBlocking.js

var child_process = require('child_process');

console.log(1)
var newProcess = child_process.spawn(

 'node', ['fibonacci.js'], {
 stdio : 'inherit'

});

console.log(2);

Here, we use the standard Node module child_process that provides a spawn() method
that launches a separate process in which to perform the calculation – hence providing a
non-blocking environment for the original code sequence. The Javascript object { stdio
: inherit } passed as the third parameter specifies that the I/O environment on the
child should be inherited from the parent – hence allowing the parent and child to share the
same console window.

Run computationalNonBlocking.js in the Command window and verify that the Fibonacci
calculation is now non-blocking – the second console.log() message is not delayed by
the calculation.

Figure A1.11 Spawning a child process to avoid blocking

A1: Introduction to Node.js 17

Note: Obviously, any operations that depend on the calculation must still wait on the result
to be made available. In such circumstances, we would create a callback function
containing the dependent code, so that code waiting on the calculation result does not fire
prematurely, while other code is not blocked by the calculation. We will see frequent
example of this in later Practicals.

